Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Micromachines (Basel) ; 14(4)2023 Mar 31.
Article in English | MEDLINE | ID: covidwho-2304259

ABSTRACT

The overall survival rate of extracorporeal life support (ECLS) remains at 60%. Research and development has been slow, in part due to the lack of sophisticated experimental models. This publication introduces a dedicated rodent oxygenator ("RatOx") and presents preliminary in vitro classification tests. The RatOx has an adaptable fiber module size for various rodent models. Gas transfer performances over the fiber module for different blood flows and fiber module sizes were tested according to DIN EN ISO 7199. At the maximum possible amount of effective fiber surface area and a blood flow of 100 mL/min, the oxygenator performance was tested to a maximum of 6.27 mL O2/min and 8.2 mL CO2/min, respectively. The priming volume for the largest fiber module is 5.4 mL, while the smallest possible configuration with a single fiber mat layer has a priming volume of 1.1 mL. The novel RatOx ECLS system has been evaluated in vitro and has demonstrated a high degree of compliance with all pre-defined functional criteria for rodent-sized animal models. We intend for the RatOx to become a standard testing platform for scientific studies on ECLS therapy and technology.

2.
Artif Organs ; 44(11): 1135-1149, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-887357

ABSTRACT

Lung transplantation may be a final destination therapy in lung failure, but limited donor organ availability creates a need for alternative management, including artificial lung technology. This invited review discusses ongoing developments and future research pathways for respiratory assist devices and tissue engineering to treat advanced and refractory lung disease. An overview is also given on the aftermath of the coronavirus disease 2019 pandemic and lessons learned as the world comes out of this situation. The first order of business in the future of lung support is solving the problems with existing mechanical devices. Interestingly, challenges identified during the early days of development persist today. These challenges include device-related infection, bleeding, thrombosis, cost, and patient quality of life. The main approaches of the future directions are to repair, restore, replace, or regenerate the lungs. Engineering improvements to hollow fiber membrane gas exchangers are enabling longer term wearable systems and can be used to bridge lung failure patients to transplantation. Progress in the development of microchannel-based devices has provided the concept of biomimetic devices that may even enable intracorporeal implantation. Tissue engineering and cell-based technologies have provided the concept of bioartificial lungs with properties similar to the native organ. Recent progress in artificial lung technologies includes continued advances in both engineering and biology. The final goal is to achieve a truly implantable and durable artificial lung that is applicable to destination therapy.


Subject(s)
Extracorporeal Membrane Oxygenation/instrumentation , Oxygenators/trends , COVID-19/therapy , Humans , Intensive Care, Neonatal , Tissue Engineering , Wearable Electronic Devices
SELECTION OF CITATIONS
SEARCH DETAIL